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Abstract. For the dynamical glassy transition in thep-spin mean-field spin-glass model a
thermodynamic description is given. The often considered marginal states are not the relevant
ones for this purpose. This leads us to consider a cooling experiment on exponential timescales,
where lower states are accessed. The very slow configurational modes are at quasi-equilibrium at
an effective temperature. A system-independent law is derived that expresses their contribution
to the specific heat.t/tw-scaling in the ageing regime of two-time quantities is explained.

The structural glass transition occurs only in an idealized adiabatic cooling procedure at
the Kauzmann temperatureTK . In a realistic experiment with finite cooling rate a gradual
freezing transition takes place in a small interval centred around a higher temperatureTf , that
depends on the cooling rate. Although the freezing is not a sharp thermodynamic transition,
there can be some 15 decades in time involved, from picoseconds to many hours. By
extrapolation from the high- and low-temperature sides, one may define jumps in quantities
such as the specific heat and the compressibility. It has been pointed out by Jäckle [1]
and Palmer [2] that the freezing transition can be described as a smeared thermodynamic
transition, on a thermodynamic basis, with ensemble averages replacing time averages. The
observation time sets the timescale that separates ‘fast’ processes (timescale less that the
observation time) from ‘slow’ ones. The latter are essentially frozen.

Upon cooling, a liquid freezes dynamically in a glassy state with extensively smaller
entropy. The free energy of the glassy state is then much larger, and it is not obvious
why the system can become captured in such a state. The point is that the condensed
system has lost the entropy of selecting one out of the many equivalent states; this part
of the entropy is called thecomplexity, configurational entropy, or information entropyI
[1, 2]. This can be understood as follows. For long times the system is stuck in states with
long (but finite) lifetimes. These states are called ‘components’ by Palmer [2] and ‘states’,
‘Thouless–Anderson–Palmer states’ or ‘TAP-states’ in spin-glass theory. When the Gibbs
free energyFā of the relevant statēa has a large degeneracyNā ≡ exp(Iā), the partition
sum yieldsZ =∑a exp(−βFa) ≈ Nā exp(−βFā), soF = Fā−T Iā is the total free energy
of the system. The entropy loss arises when the system chooses the state to condense into,
since from then on only that single state is observed†. As the total entropyS = Sā + Iā is
continuous, so is the total free energy.

† This sudden loss of entropy is reminiscent of the collapse of the wavefunction in the quantum measurement.
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The aim of this work is to analyse this thermodynamical picture of the dynamical
freezing transition in a well understood mean-field model. The difficulty is to extract the
information that is not due to the mean-field limit. The advantage is that we find strong
constraints satisfied by the dynamics, without having solved it. We first discuss the present
status of marginal replica theory, its relation with dynamics and its fundamental flaws. Then
we shall propose a solution to these paradoxes.

We consider the mean-fieldp-spin interaction spin-glass model ofN coupled spins in
a field with Hamiltonian

H = −
∑

i1<i2<···<ip
Ji1i2...ipSi1Si2 . . . Sip −H

∑
i

Si . (1)

The independent Gaussian random couplingsJi1i2...ip have average zero and variance
J 2p!/2Np−1. The spins are subject to the spherical condition

∑
i S

2
i = N .

This model has a close analogy with models for the structural glass transition [3]. On
a static level there occurs a transition to a state with one-step replica symmetry breaking
(1RSB) at a temperatureTK , comparable with the ideal glass transition in an adiabatic
cooling experiment. The 1RSB calculation involves three parameters. The overlap of spin
configurations in two states can equal the Edwards–Anderson parameter or self-overlapq1,
or have the smaller valueq0 (= 0 for H = 0); these values occur with probability 1− x,
andx, respectively. The free energy reads

F

N
= −βJ

2

4
(1− ξqp1 − xqp0 )−

βH 2

2
Q− T

2x
logQ+ T ξ

2x
log(1− q1)− T q0

2Q
(2)

where ξ = 1 − x and Q = 1 − ξq1 − xq0 . Unless stated otherwise, we shall take
H = 0. q0 and q1 are determined by optimizingF . For x the situation is not unique,
but depends on the timescale considered. Setting∂F/∂x = 0 yields the static phase
transition atT ≡ TK†. When considering the Langevin dynamics of this model, one
may derive dynamical equations for correlation and response functions by taking first
N → ∞. [5] Solving for larget leads to a sharp phase transition at larger temperature
TA = J {p(p−2)p−2/2(p−1)p−1}1/2, and a different formx(T ). This dynamical value for
x can be simply rederived from a replica calculation in which the ‘replicon’ or ‘ergodon’
[5, 6] fluctuation mode is taken to be massless. This leads to the marginality criterion
p(p − 1)β2J 2q

p−2
1 (1− q1)

2/2 = 1. At the dynamical transition there is a sharp jump in
the specific heat [5].

To discuss the situation, we must first consider the TAP states. A state is labelled bya

and has local magnetizationsmai = 〈Si〉a. Its free energyFa(T ) is a thermodynamic potential
that determines the internal energy and the entropy by its derivatives. In the present model
Fa = FTAP (mai ) is known explicitly. It is a minimum of the ‘TAP’ free-energy functional
[7–9]

FTAP (mi) = −
∑

i1<···<ip
Ji1...ipmi1 . . . mip −H

∑
i

mi − NT
2

log(1− q)

−NβJ
2

4
(1+ (p − 1)qp − pqp−1) (3)

whereq = (1/N)∑i m
2
i is the self-overlap. Below we shall argue that the commonly used

Gibbs weight,pa = exp(−βFa(T ))/Z is the relevant one. Given thepa ’s one can define
the component averages such asF = ∑a paFa, U =

∑
a paUa, C =

∑
a paCa, and even

† On a static level the system condenses in the temperature rangeTK < T < TA into a state with higher free
energy but with complexity such that the total free energy equals the would-be paramagnetic free energy [3].
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the complexity [1, 2]I = −∑a pa lnpa. For observables the direct evaluation from the
ordinary partition sum should coincide with the outcome of the TAP analysis:U = U ,
M = M. They need not be derivatives ofF . The role of the complexity in dynamical
transitions was first pointed out by Kirkpatrick and Wolynes for Potts models [3] and for
thep-spin model by Crisanti and Sommers [9]

For all T < TA the mode-coupling equations come in due to the presence of a zero
mode. On a quasi-static level, this dynamical zero mode is related to a massless fluctuation
eigenvalue (the ‘ergodon’) in the related replica calculus [5, 3]. We recently assumed that
this is a very general phenomenon. It will automatically become trapped in a state with
diverging timescale, whenever present. The marginal replica free energy has the form

F = F − T Ic
x

(4)

where

Ic = N
(

1

2
log(p − 1)+ 2

p
− 1

)
(marginality) (5)

is the complexity of the marginal states. BelowTA the free energy lies below the one of
the paramagnets and has a larger slope. This would naively imply a latent heat.

There is, however, another prediction for the free energy [5]. It involves the internal
energy and an entropy obtained by integrating(1/T )∂U/∂T from a temperature in the
glassy phase up to some large temperature. The resulting ‘experimental’ glassy free energy
[5]

Fexp= F − T Ic (6)

exceeds the paramagnetic free energy quadratically and is, by construction, a thermodynamic
potential. It was reproduced by analysis of the TAP states [9].

The difference between (4) and (6) led us to question fundamentally the validity of
replica calculations for dynamical 1RSB transitions. Our aim was to find the meaning of
the logarithm of the dynamical replica free energy (equation (2) with∂F/∂q0 = ∂F/∂q1 = 0
but with ∂F/∂x 6= 0).

By doing the full thermodynamic analysis of the TAP partition sum
∑

a exp(−βFa) at
H = 0, we found that that the replica free energy (4) is reproduced [11]. As the glassy free
energy lies below the continuation of the paramagnetic one, we considered this as proof
that the complexity is the driving force for the dynamical phase transition [11]. In the
doing the analysis we realized that the calculation of the dynamical complexity cannot be
separated from the calculation of the free energy, and that replica symmetry breaking is
essential. The problem boils down to a replicated TAP free energy that has six replicated
order parameters. We have now extended this analysis toH > 0. For 1RSB with a
common breakpoint̃x, each replica order parameter now brings three parameters. We thus
obtain an optimization problem in 18 variables, that we can partly solve using an algebraic
manipulation program. We have verified that the total free energy, the internal energy and
the magnetization, calculated within the TAP approach, coincide with their replica values.
For the magnetization this is particularly satisfying, asMa of a given marginal TAP state
is temperature independent. (It then holds that∂Ma/∂T = ∂Sa/∂H = 0. Nevertheless, the
component averageM = ∑

a paMa is temperature and field dependent, and equal to the
replica valueM = βH(1− ξq1− xq0)).

For interpreting equation (4) one might be tempted to considerIc/x as the full
complexity. Sincex → 0 for T → 0, this is hard to explain on a physical basis, however.
The 1/x dependence in (4) does not disappear after the quantization of the spherical model,
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recently proposed by us [12, 6]. Analysis of the equations for quantized spherical spins, or
for Ising spins, teaches us that, thoughTA shifts, the termT Ic/x(T ) survives for marginal
states.

The other interpretation of equation (4) is thatTe ≡ T/x is an effective temperature
at which the slow processes leading toIc are in quasi-equilibrium. This interpretation
is promising, since the same effective temperature shows up in the fluctuation-dissipation
relation in the ageing regime of the mode-coupling equations [13].

There remain some paradoxes connected to the marginal states. For largep one
has Ic ∼ (N/2) logp, which (for quantized spherical spins or for Ising spins) already
exceeds the total entropy available. This shows thatthe dynamical transition atTA has no
thermodynamic counterpart in short-range systems, at least for large enoughp. In fact,TA
may be identified with the critical temperature of mode-coupling theory, which lies well
above the freezing temperatureTf . Even more cumbersome is that for marginal states with
H 6= 0 we have shown violation of the inequalityC > C [11]. This says that marginal
states are intermediate-time states, from which the system must escape at longer times.

The implication of these arguments is rather dramatic: for comparing with realistic short-
range systemswe must abandon the assumption that the marginal states are the physically
relevant states. Let us see how this could happen. Marginality arises automatically in the
dynamical equations after taking first the limitN → ∞ and thent → ∞. This order of
limits, however, prevents all activated processes, which in the mean-field model would need
a time∼ exp(N). As a result, all dynamics is confined to the highest TAP states, which
are marginal. The lower states are never reached. In a realistic short-range glassy system,
however, there is no sharp distinction between slow and activated processes, and the latter
can certainly not be omitted. So in a realistic experiment we do expect to reach lower
states.

In order to compare with realistic systems and to avoid thermodynamic paradoxes, we
propose another look at the mean-field system. We consider the system at fixed large
N under such conditions that a range of TAP states below the highest (marginal) ones are
accessed. We thus focus our attention more on the free energy of the state than the timescale
needed to reach it. AtH = 0 the free energy of the TAP states can be characterized by a
parameterη (ηst 6 η 6 1), that enters the condition

β2p(p − 1)qp−2(1− q)2/2= η. (7)

For η = 1 this would be the marginality condition, while the static equations can also be
put in this form [4] with η = ηst < 1 independent ofT . One now finds the breakpoint
x = (1− q)(p− 1− η)/qη, so choosingη betweenηst and 1 can alternatively be seen as a
way of fixing the mysterious parameterx, for which no obvious criterion was present. In the
present approach it is directly related to the timescaletη ≡ exp(Nτη) at which theη-states
are reached. Unfortunately, the precise relation between the logarithmic time variableτη
and the lowest reachable TAP free energy at that scale,Fη, is unknown.

We assume that at a given exponential timescaleτη the dominant states are determined
by a saddle point. Such behaviour was seen in a solvable glassy transition in a directed
polymer model, recently proposed by us [15]. This allows us to restrict the discussion to
TAP states with a common free energy.

We have verified that the equivalence between the replica and the TAP analysis also
holds forη < 1. Theη-states have a complexity that can be calculated in a straightforward
manner from their replica free energy

Ic(η) = N

2

{
log

p − 1

η
− (p − 1− η)(η + 1)

pη

}
. (8)
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As η decreases from 1 toηst, Ic(η) goes down from the marginal valueIc(1) to the static
valueIc(ηst) = 0. A sensible cooling experiment must have a temperature-dependent value
of η. If η does not approachηst fast enough forT → 0, then the system will reach aT = 0
state with finite configurational entropy, from which it may relax at later times. In hindsight
this is just what is needed to describe a realistic cooling experiment in the mean-fieldp-spin
model. Let us assume some logarithmically slow cooling trajectT (t) where alsoη = η(t)
depends on time in a still unknown, but determined fashion. We can then eliminatet and
construct the functionT (η) (and its inverseη(T )) that characterizes our cooling traject. A
dynamical freezing transition will occur when the lowest state reached at timet freezes at
the temperatureT (t). This occurs atTf = T (ηf ) whereηf is the solution of

T (η) = J
{
pη(p − 1− η)p−2

2(p − 1)p−1

}1/2

. (9)

As T (t) andη(t) will depend on the cooling procedure, we expectT (η) to do the same, so
that Tf will not be universal but depend on the specific traject.

Also the assumption of Gibbs weights is now justifyable. TAP states with free energy
larger than or equal to the ones fixed byη are now effectively in thermodynamic equilibrium,
and may be described by the Gibbs weight. Lower ones play no role.

The paradoxes related to marginal states, signalled here, occur much more widely.
At present it is a whole field of research to consider dynamics of mean-field models by
first taking the mean-field limit and then considering large times. Though the approach
has relevance for short and intermediate time dynamics, its long-time regime is a result of
‘squeezing the system into marginal states’, which has no bearing on the long-time relaxation
of short-range models. This is already expressed by the unique sharp dynamical transition
temperatureTA, found in the dynamical approach. It disappears on exponential timescales,
and is replaced by a cooling-rate dependent freezing temperature.

The basic problem with our approach is the complexity. An important question is
whether it can be measured in the glassy phase. If so, it should be related to the
specific heat or the temporal energy fluctuations. When monitoring the internal energy
as function of time, as is easily achieved in a numerical experiment, one essentially
obtains a noisy telegraph signal. Each plateau describes trapping in a TAP state for some
definite time. The variance of the noise in the internal energy on this plateau is equal to
T 2C = T 2∑paCa =

∑
a〈(δUa)2〉 = T 2∑padUa/dT . From time to time the system

moves to another TAP state, causing additional noise. The variance of the total noise equals
T 2C, and should exceedT 2C [2]. In [11] it was pointed out that there can be an extensive
difference between the specific heatC = dU/dT = dU/dT = ∑

a d(paUa)/dT and the
component average energy fluctuationsC = T dS/dT . We can now consider their difference
atH = 0 in a cooling experiment of the type introduced above. We find theexcess specific
heat

1C ≡ C − C = N q(1− η)
2pη(1− q) T

dη

dT
. (10)

Using this we can easily verify the fundamental relation

d

dT
Ic(T ) = 1

T
x(T )1C(T ). (11)

It expresses the complexity in terms of measurable quantities, namely the excess specific
heat and the ergodicity-breaking parameterx. Equation (11) holds equally well forH 6= 0
but fixed. In the generalization of (10) one now encounters parameterη(T ;H) and its
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derivative∂η/∂T . The proof of equation (11) forH 6= 0 is lengthy but could be verified
using an algebraic manipulation program†.

The complexity can also be measured along the transition line in the(T ,H)-plane. This
issue is related to the Ehrenfest relations, and has been discussed elsewhere [16].

With Te = T/x equation (11) can also be written as

dU

dT
= T dS

dT
+ Te dIc

dT
. (12)

Our interpretation of the replica results leads to an effective temperatureTe(t) =
T (t)/x(t). The slowest active modes are at quasi-equilibrium at this effective temperature.
This explains whyTe also shows up in the fluctuation-dissipation relation [13, 14]. As they
set the slowest timescale, they must also dominate the dynamical free energy. This is why
the change of structural modes dIc/dT in equation (12) has prefactorTe.

In numerics on the fluctuation-dissipation relation in spin glasses and even binary soft
spheres [17] it has been observed that the factorx is linear in T . Let us give a simple
explanation for that behaviour. As the effective temperature must exceed the Kauzmann
temperature, we can estimateTe(T ) ≈ constant, implying indeedx = T/Te ∼ T .

If we quench the system from high temperatures deep into the glassy state, and let it
evolve freely during a long waiting timetw, Te will be set by equating the equilibrium
relaxation timeτeq at the instantaneousTe to tw: τeq(Te) = tw. Naively, one then
expects two-time quantities in dynamics to be a function of(t − tw)/τeq(Te) = t/tw − 1,
explaining immediately the often observedt/tw scaling in the ageing regime. There could
be logarithmic corrections to this behaviour.

Replacingx → T/Te we can write equations (2) and (4) as

F(T , Te) = U − T S − TeIc. (13)

It is a dynamical free energy determiningS = −∂F/∂T and Ic = −∂F/∂Te, while
U = F + T S + TeIc. The system-independent laws (12) and (13) are the cornerstone
for our thermodynamic description of the dynamical glassy transition, and expected to be
valid in general.

We have verified equation (12) for a cooling procedure in the Ising chain with Glauber
dynamics. AtT = 0 it is a coarsening problem of alternating up and down clusters of
average lengthξ(t) = √4πt and energyU(t) = NJ(−1 + 2/ξ) [18]. The number of
configurations with this energy can be counted by standard methods. Its logarithm reads
Ic = N(1+ ln ξ)/ξ . From the internal energy one may introduce an effective temperature:
1/ξ = e−2βeJ → Te = 2J/ ln ξ(t). The same value would follow when definingTe from
the complexityIc. Both results can thus be combined in terms of a dynamical free energy
F = −NTe ln(2 coshβeJ ). This is a special case of equation (13) withS = 0.

As above, we then consider a cooling experiment whereT (t) = 2x(t)J/ ln ξ(t) with
a smooth decreasing functionx(t). In the initial regimex(t) > 1 the system will achieve
equilibrium at the instantaneous temperatureT (t). For x(t) < 1 this will not happen. The
system falls out of equilibrium and behaves as atT = 0: it is at quasi-equilibrium at
Te(t) = T (t)/x(t). The freezing transition occurs aroundTf = T (tf ) wherex(tf ) = 1. In
the frozen phase equations (12), (13) are valid withS = 0. At T = 0 (and for allT < Tf )
the on-site correlation function is found to be a scaling function oft/tw,

Summarizing, we have shown that a thermodynamic description of a dynamical freezing
transition can be given‡. We have been led to discard the whole issue of marginal states.

† The quantityC−C = −a(T ,H ; η)H 2+ b(T ,H ; η)∂η/∂T is negative whenη(T ;H) = 1 (marginal states). In
the present approach withη < 1, ∂η/∂T > 0 the equilibrium inequalityC > C can be satisfied by the dynamics.
‡ Equations (12) and (13) withS = 0 also hold for cooling procedures in the backgammon model of [19].
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For comparison with realistic short-range systems, we consider the mean-field system at
exponential timescales, where lower states are accessed. They contribute to the partition sum
of Gibbs weights over dynamically relevant states. This approach naturally leads to slow
cooling procedures where a dynamical freezing transition occurs at a tunable temperature.
This dynamical transition is described by a free energy that depends on the real temperature
and on an effective temperature.

Within the framework of the present approach the effective temperature shows up in
equation (12), that is to say, in the formulation of the second law of thermodynamics. Since
the submission of this work we have shown that, at least within the dynamics of a toy-
model that does not rely on the mean-field approximation, the effective temperature depends
slowly on time. It also shows up in fluctuation formulae and in the fluctuation-dissipation
relation [20]. This approach also explains the confusion that has existed for half a century
concerning the validity of the Ehrenfest relations along the freezing line, and the value of
the Prigogine–Defay ratio [16].

The author thanks H F M Knops, F Ritort and M van Zuijlen for discussion.

References
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